The ABCs of Precision Driving

Most officers have been through some sort of driver training, either in the academy, or as part of an in-service class. While academy training is often looked upon as so basic as to be almost useless in the real world, one place where that is absolutely not the case is in driver training.

Academy driver training is usually built around a defensive driving model, and is perhaps better referred to as precision driving. Most of the recruits that enter an academy have just a few years of driving experience under their belts, along with a high school driver's education class that may or may not have done a good job of addressing the basics.

Because recruits will soon be "out there" in the real police world, and will be operating a vehicle on a daily basis, academy driving instructors must do what they can to ensure that graduating recruits have a solid grounding in basic driving skills. In order to do that, they must address the fundamentals of vehicle operation. Here's how we teach it at our academy.

The ABC Approach to Driver Training

A vehicle is only designed to do three things. First, it has to "go," and that involves acceleration. Here we're not just talking about an increase in speed, which is the common usage of the term. In order to keep a vehicle moving down the roadway, constant acceleration force must be applied to the wheels; otherwise the vehicle will roll to a stop. Acceleration is the "A" in ABC.

If it's going to "go," then it has to "stop," and in the case of a vehicle, that's accomplished through braking force. Braking occurs in two ways: One is the natural braking that occurs through application of physical laws and natural forces--think gravity, inertia, and Newton's laws--and the other is the active braking that occurs when a driver steps down on a vehicle's brake pedal.

When active braking occurs, friction develops (this actually happens during "natural" braking, as well, but we'll focus here on the active type). Friction occurs in two general areas: One is within the braking system itself--between the pads and rotors, or between the shoes and drums--and the other is between the tire and the road surface.

There is a relationship between the friction that develops at these two points, and that relationship, or ratio, must be balanced. If too much friction develops in the braking system, the vehicle may begin to skid, or the anti-lock braking system may take over. If not enough friction develops in the braking system, the vehicle won't slow down soon enough, and the vehicle might hit whatever object the driver was trying to avoid.

A driver learns how to manage this braking ratio through experience, and must constantly monitor it, as each vehicle's equipment and each roadway surface condition will require an adjustment on the driver's part. Braking, then, is the "B" in ABC.

The third thing a vehicle is designed to do is to turn, or to corner. Anytime a vehicle deviates from a straight path of travel--be it forward or reverse--cornering force develops.

When engaging in precision or performance driving, an officer will typically be interested in arriving as quickly and safely as possible. This will usually translate to the way a driver manages his or her vehicle's cornering. Often drivers use a technique commonly referred to as "apex cornering." Most drivers do this, and it is sometimes referred to--or thought of--as "straightening out the curves." Vehicles that are apex cornering will use as much of the roadway as they can, while maintaining a safe path of travel. Thus, if a driver can see around a curve or a corner, he or she will cut across the corner, thereby straightening out the curve, and shortening the distance the vehicle must travel to get around the curve (the shortest distance between two points is a straight line, and the same holds true for the shortest distance around a curve).

Cornering does not occur by itself; it is done in tandem with acceleration or braking. Cornering is the "C" in ABC.

The Performance Envelope

These three variables, the ABCs of precision driving, are combined in various ways as a vehicle is driven. Of course, each of the three has its theoretical limits: A vehicle has a top speed, or a certain turning radius, or a certain ability to stay on the road when turned into a corner at a given speed. Each of these maximum performance potentials can be combined into the theoretical construct of a "performance envelope."

As long as a driver keeps the vehicle inside the envelope, the vehicle is capable of being controlled. Once outside the envelope, the vehicle is forced past its engineered performance capability, and cannot be controlled. The performance envelope flexes, changing size and shape based upon the vehicle's condition and the physical environment within which the vehicle is operated.

Of course, an inexperienced driver may not be able to control the vehicle, even though it's still within its performance envelope. And even an experienced driver would do well to stay more toward the center of the performance envelope, away from the edges, where a vehicle that's right on the edge of control could easily be thrown outside the envelope by an unforeseen circumstance, such as a sudden change in pavement surface, weather, or an unexpected obstacle. Driving close to the edge is really "pushing the envelope."

Driver Experience: The Moderating Factor

Since a vehicle's condition and the driving environment will constantly evolve during a driving scenario, the driver must remain alert for these changes, and be prepared to act accordingly to maintain safe operation. The more experienced a driver is, and the more training he or she has, the better equipped they will be to make quick decisions based upon their perceptions while driving.

A driver must build a memory bank of experiences that can be drawn upon in a vehicle handling situation. Actual driving experience is invaluable in this regard. Driver training can then augment what a driver already knows.

In an academy setting, where many recruits have only a few years of driving experience, multiple repetitions of driving maneuvers take on added importance. Whatever time is available should be spent on allowing students to practice defensive and precision driving skills, under the tutelage of experienced instructors. Various exercises should be utilized that will force students to make decisions about how and when to apply the ABCs of precision driving in a given situation.

Given this solid foundation to build on, even inexperienced drivers will have a better chance of reducing the likelihood of a traffic crash once they hit the street.

Stay safe, and wear your vest (and Buckle Up!)